
Exscind: Fast Pattern Matching for Intrusion Detection Using

Exclusion and Inclusion Filters

Monther Aldwairi and Duaa Alansari

Department of Network Engineering and Security
Jordan University of Science and Technology

Irbid, Jordan
munzer@just.edu.jo, dwalansari08@cit.just.edu.jo

Abstract—The need for efficient intrusion detection systems

increases every day to protect network traffic against emerging

attacks. Unfortunately, increasing network speeds and number

of signatures makes it harder for the existing signature-based

intrusion detection systems to keep up. This makes those

systems the weak link and the bottleneck which decreases the

overall network performance. Researchers found that 30%-

60% of the overall processing time of signature-based intrusion

detection systems is spent on pattern matching operations [1].

In this paper, we present a novel and fast software-based

pattern matching algorithm to reduce the number of times to

perform pattern matching. This new algorithm introduces an

exclusion-inclusion filter programmed only with signatures

prefixes. It filters out the clean traffic without requiring

pattern matching and weeds out suspicious packets to be

searched using a specially modified Wu-Manber pattern

matching algorithm. The exclusion-inclusion filter is a

modified Bloom filter that produces a list of probable matching

signatures for each suspect packet. The remaining few

suspicious packets are searched only for the probable matches.

Compared to the Wu-Manber algorithm used in intrusion

detection systems, the experimental results indicate a speed up

of 3.4 times on average, 5.5 times for regular traffic, and 1.6

times for worst case traffic. The memory overhead added by

the algorithm was limited to 0.11%.

Keywords-intrusion detection; network security; pattern

matching; Snort; Bloom filters

I. INTRODUCTION

The Internet is integrated in all kinds of personal and
business activities. With more and more services turning
online and with the growing Internet connectivity and speed,
the risk of putting private data at jeopardy increases. The
need for faster, accurate and smart protection systems is
urgent. Intrusion Detection Systems (IDSs) are popular in
protecting network traffic against intruders. IDSs collect and
analyze ingress and egress packets looking for suspicious
contents or behaviors and alert the network security
administrator. They are classified depending on the detection
technique into anomaly-based and misuse-based. Anomaly-
based IDS uses machine learning techniques to profile the
normal network behavior and classify the incoming traffic
into either normal or abnormal. A major advantage of
anomaly-based IDS is the ability to detect new attacks.
However, they suffer from slow speeds and high false

positives. On the other hand, misuse-based often referred to
as signature-based IDSs employ exact pattern matching
algorithms to look for specific patterns, called attack
signatures, within a packet stream. Signature-based IDSs are
the preferred protection technique because they are faster,
more accurate and have low false positives. But they suffer
from the inability to detect emerging attacks that do not have
signatures yet. In addition, signatures are drafted manually,
making the IDS as accurate as the security threat analyst who
authored the signatures. None the less, signature-based IDSs
remain the most popular and widely deployed.

At the core of the signature-based IDSs is the pattern
matching algorithm which matches the incoming packets to
the attack signatures database. Research has shown that
between 30%-60% of total signature-based IDS processing
time is spent on pattern matching, making it the bottleneck
and most computationally extensive task of intrusion
detection [1]. In addition, new attacks pop up daily and
therefore the number of signatures increases making the IDS
task even harder. The number of Snort rules containing
signatures increased from 1,542 rules in 2003 [2] to 9,945
rules in 2011 [3]. To make matters worse, the Internet speed
is ought to double every eighteen months according to
Moore’s law and the Internet traffic is doubling every six
months [4]. This makes the window for performing pattern
matching smaller and smaller. Unfortunately, the existing
signature-based IDSs cannot meet the speed demands
imposed by both high network speeds and increasing number
of signatures.

To remedy that, we propose a new fast and memory-
efficient software-based pattern matching algorithm to speed
up signature-based IDS. We call it Exscind which means to
exclude from the union. The contributions of this paper are
twofold: a new exclusion-inclusion filter and a modified
pattern matching algorithm. This algorithm programs and
queries the filter to determine if an incoming packet is
benign or suspicious. This helps exclude and skip the search
of all benign packets. For the remaining suspicious packets,
the filter reports probable matching signatures to be included
in the search process. In addition, the filter marks the
location of the first probable matching signature in the
packet. Exscind modifies the Wu-Manber pattern matching
algorithm in a novel manner to minimize the number of
patterns to be searched. The new algorithm searches every
suspicious packet for only the probable signatures reported

24978-1-4577-1127-5/11/$26.00 c©2011 IEEE

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS
80 (msg:"WEB-IIS CodeRed v2 root.exe access";

content:"/root.exe"; sid:1256)

by the filter. Moreover, the modified Wu-Manber skips
much of the packet and starts the search at the the position of
the first probable match. Numerous experiments are
performed to evaluate and compare Exscind to Wu-Manber
and other algorithms in the state of the art literature.

The rest of the paper is organized as follows. Section II
explains the necessary background. Section III briefly
surveys the related work. Section IV explains Exscind
algorithm. Section V presents the traffic traces analysis,
defines the performance metrics, and discusses the results of
speed and memory simulations.

II. BACKGROUND

Before presenting Exscind, the following Subsections
provide the necessary background to understand pattern
matching for IDS and basic Bloom filters theory.

A. Snort

Snort has been used by most researchers in the literature
for evaluation purposes. It comes with a database of
thousands of rules most of them contain attack signatures [5].
Fig. 1 shows a snippet of an actual Snort rule where "alert" is
the action to be taken if a packet matches the rule. "TCP" is
the protocol and "$EXTERNAL_NET" is an environment
variable representing the source IP. Other protocols
supported include UDP, ICMP and IP. "Any" means any port
number or range. The arrow separates the source from
destination {IP, port} duple and indicates incoming or
outgoing packet flows. "$HTTP_SERVERS" is a variable
for the destination IP address and "80" is the destination port
number. “msg: "WEB-IIS CodeRed v2 root.exe access"” is
the message to appear in logs if the rule is matched.
“Content:"/root.exe"” is the signature to search the packet
payload for. Special pipe operators “|10|” allows enclosing
HEX characters within the contents string. "Sid:1256" is the
rule identifier indicating the signature ID (SID).The rule in
Fig. 1 is read as follows. Alert the administrator if an
incoming packet is directed to one of the local HTTP servers
and tries to execute “ /root.exe”.

B. Pattern Matching for IDS

The process of matching the rules contents or signatures
to packet payload boils down to pure pattern matching. Snort
uses three pattern matching algorithms: modified version of
Boyer-Moore (BM) [6], Aho-Corasick (AC) [7] and Wu-
Manber (WM) [8]. The algorithms can be categorized into:
single and multiple pattern matching. Single pattern
matching searches for only one pattern at a time while
multiple pattern matching searches the packet for all patterns
at the same time. The main drawback of the single pattern
matching is that the packet has to be scanned once for every
string, which is very time consuming.

Figure 1. Snort rule example

C. Wu-Manber

The Wu-Manber algorithm is the fastest and most
efficient multiple pattern matching algorithm introduced by
Udi Manber and Sun Wu in 1994. It extends the bad
character heuristic of BM algorithm to a bad character block.
Moreover, it outperforms the AC algorithm by adopting hash
tables as opposed to finite automata which consumes more
memory and time. WM algorithm consists of two phases:
preprocessing and searching.

1) Preprocessing Phase
In this phase, WM computes the minimum length of the

patterns (m). Then, WM works on blocks of size B and
builds three hash tables: SHIFT, HASH, and PREFIX. The
SHIFT table is a hash table that maps each substring of size
B characters into a shift value representing the number of
characters to skip on a mismatch and it is constructed as
follows. Let X be a block of characters, then there are couple
of scenarios: if X does not appear in any pattern at all, then
the shift value will be the default value of SHIFT[i] = m – B
+ 1 characters. The second scenario is if X appears in one or
more patterns, then the shift value will be SHIFT[i] = m – q,
where q is rightmost position that X occurs in any pattern.
WM calculates the shift values by mapping each substring of
any pattern Pi of size B into the SHIFT table. The HASH
table is indexed by the same hash function used for the
SHIFT table for faster access and it aims to prevent
comparing a substring to all patterns in the pattern list. For
each character block with zero shift value the HASH table
lists all signatures containing that block. The PREFIX table
is used to speed up the HASH table search and contains the
hash values for the prefixes of the patterns in the HASH
table [8].

2) Searching Phase
In the search phase, WM divides the incoming packet in

a sliding window fashion and hashes the first block. Next, it
checks the SHIFT table to find a corresponding shift value.
There are two possibilities: the shift value is greater than
zero, then the sliding window is shifted by that value and a
new hash value is computed for the new block. The second
possibility is zero shift value indicating a match possibility,
then both HASH and PREFIX tables are used to verify if
there is an actual match.

D. Wu-Manber Example

Table I shows the SHIFT table for the signatures shown
in Table II. The signatures are extracted from Snort rules
database version 2.9.0.4 [9]. The block size B is 3 and the
minimum pattern length m is 6. The SHIFT table is initially
filled with the default value which equals m – B + 1 = 6 – 3
+1 = 4. For substring “log” which exists in signature number
162 “logged in”, the shift value is m-q= 6 – 3 =3. The
SHIFT table only includes substrings which exist in
signatures. To keep the table size under control, all other
substring combinations that are not part of signatures are
summed up under “others”. Fig. 2 shows the corresponding
HASH and PREFIX tables. The HASH table includes lists of
signatures containing substrings that have a shift value of

2011 7th International Conference on Next Generation Web Services Practices 25

zero {ge/, ged, DIR}. While the PREFIX includes hash
values for signature prefixes to speed up the matching.

Fig. 3 shows the steps to scan the input text
"ztimage/lkSYSDIRo" for the patterns in Table II. In step
one, start with the sliding window of {ztimag}. The last B
characters {mag} are hashed and the SHIFT table is accessed
to retrieve the shift value of two. The window is shifted by
two to become {image/}. In step two, the last B characters
{ge/} have a shift value of zero indicating a possible match.
Consequently, check the HASH and PREFIX tables to verify
the exact pattern match and obtain the matched pattern
{image/} as a result. The next step slides the window by one
to become {mage/l}. The last B characters are {e/l} and have
a shift value of four making the next window to scan
{/lkSYS}. In step four, the last B characters {SYS} have a
shift value of three making the next window to scan
{SYSDIR}. In step five, the last B characters {DIR} have a
shift value of zero indicating a possible match. Therefore,
check the HASH and PREFIX tables to verify the exact
match and retrieve the pattern {SYSDIR}.

E. Bloom Filters Theory

Bloom filters were presented in 1970 by Burton Bloom
[10]. The Bloom filter creates a hash vector representation of
strings which can easily exclude negative matches. The filter
preprocesses the strings by computing k hash values ranging
from 1 to m for each string. The bits corresponding to the
hash values computed for all strings are set in an m-bit long
vector. To search a packet for the strings the filter is checked
by computing the same k hash values on the packet in a
sliding window fashion. Then, the corresponding bits of the
vector are examined to determine whether the given item
exists or not. If at least one bit is not set, it means that the
item is not a member of the filter with 100% certainty, i.e.
Bloom filters have no false negatives. On the other hand, if
all the bits are set in the vector, then the item belongs to that
string set with a certain probability. Exact pattern matching
must be used to verify if the item actually belongs to the
given set or not.

III. RELATED WORK

The literature is rich with research to accelerate
signature-based IDS. The majority are hardware
architectures and algorithms which are expensive, complex
and suffer from cost and configurability issues.
Configurability is a very important issue because of the
constant need to add new signatures. In 2005 Haoyu Song et
al. [11] proposed a new lookup algorithm which speeds up
the HASH tables where they modified Bloom filters to
provide exact matches. The Speedup comes from cutting the
number of hash collisions and using a small external
memory. The main disadvantage is the need for an expensive
cache like on-chip memory. Sarang Dharmapurikar et al.
[12] presented a new hardware pattern matching algorithm in
2006 using a combination of Bloom filters and classic AC
algorithm. They implemented Bloom filters using embedded
on-chip memory blocks in FPGA. Deepti Chaudhary et al.
[13] proposed a new hardware parallel architecture in 2010
based on Bloom filters. It can test input strings

simultaneously to detect possible attacks with less delay. It
computes hash functions concurrently on all test strings and
can AND bit location values in the look up array separately
for different hashes of different strings.

On the other hand, software-based techniques are cheaper
and easy to reconfigure. However, they are unable to match
the increasing network speeds and they require a lot more
memory. Kostas Anagnostakis et al. [14] proposed a new
exclusion filter in 2003 for IDS called E

2xB. It is an
exclusion-based filter that preprocesses the packet by using a
256 cell map to mark the existence of each character of
patterns within the packet. If at least one character of a
pattern is not marked, it means that this pattern does not exist
in that packet. Zhongqiang Chen et al. [15] proposed a new
system in 2009 to accelerate pattern matching for IDS by
combining both fingerprinting and pattern matching
techniques. In the programming phase of the fingerprinting,
the system generates a short digest for each pattern. Then, it
computes the digests of the incoming packets to match them
against those of the patterns. BM algorithm is then used to
perform exact pattern matching. Ramakrishnan Kandhan et
al. [16] proposed an efficient and scalable system in 2010
called sigMatch to improve multi-pattern matching
algorithms. It preprocesses all the patterns to organize them

TABLE I. WM SHIFT TABLE

TABLE II. SNORT SIGNATURES EXAMPLE

Figure 2. WM HASH and PREFIX tables

Figure 3. WM search

Pattern SID

image/ 2706

logged in 162

imagedata 12280

WINDIR 3010

SYSDIR 3011

Block Shift Block Shift

mai 3 WIN 3

mag 2 IND 2

age 1 NDI 1

ge/ 0 DIR 0

log 3 SYS 3

ogg 2 YSD 2

gge 1 SDI 1

ged 0 others 4

D I R

i m a g e /

l o g g e d i n

i m a g e d a t a

W I N D I R

S Y S D I R

g e d

g e /

HASH Table PREFIX Table
h(ima)

h(log)

h(ima)

h(WIN)

h(SYS)

26 2011 7th International Conference on Next Generation Web Services Practices

in a q-gram index structure called sigTree according to
common sub-patterns. The sigTree combines the features of
both faster tries and Bloom filters which consumes less
memory. The idea is to match all the patterns against the
sigTree to discard the unmatched ones and the remaining
patterns are sent to a verification unit to check their presence.

There exist several modified versions of WM not
necessarily for IDS. Yang Dong Hong et al. [17] introduced
a Quick Search improved WM algorithm (QWM) in 2006.
QWM adds a HEAD table which contains first two
characters of the patterns to help determine if the first two
characters in the matching window are the prefix of any
pattern. Chen Zhen et al. [18] presented an improved WM
(IWM) in 2008. IWM added a second SHIFT table to
increase the possibility of shift at each comparison and to
reduce the number of accesses to the HASH table. Baojun
Zhang et al. [19] proposed an Address Filtering Based WM
Multiple Patterns Matching Algorithm (AFWM) in 2009. It
optimizes the access to the PREFIX table to accelerate
searching the linked lists by sorting the patterns into
ascending order according to the address pointers.

IV. EXSCIND

We propose Exscind: a new, fast and memory-efficient
software-based matching system. It introduces an exclusion-
inclusion filter that excludes clean traffic without the need to
perform costly pattern matching. For that purpose a Bloom
filter is modified to provide probable matches to further
reduce the number of pattern matching operations required
for suspicious packets. The filter is programmed with only
the prefix (first 4-grams) of all Snort signatures in order to
keep the filter processing overhead to minimum and speed
up matching by skipping clean packets. The incoming packet
is hashed and queried for those prefixes. If the query is
negative then the packet is clean and can safely be skipped.
If the query is positive then the packet probably contains an
attack signature prefix and requires further matching. The
filter produces a set of probable matches that are used by the
probable match modified WM (PWM) to determine if there
is a full signature. That is, the suspicious packets are
searched for just a subset of signatures as opposed to all
Snort signatures. In addition, the filter indicates the position
within the packet where the first probable match was found,
enabling the PWM to search part of the packet starting from
that position as opposed to searching the whole packet.
Because the majority of traffic is benign, Exscind accelerates
pattern matching and improves the overall performance at
the expense of adding minimal processing and memory
overhead attributed to the filter.

Exscind works at packet level using one sliding window,
one buffer for storing signature IDs and one signatures
Bloom vector. The following Subsections illustrate by
example the different stages of the algorithm.

A. Exscind Example

The first step is to initialize the modified Wu-Manber
with all Snort signatures. Next, Exscind creates and
programs the signatures Bloom vector with just the 4-gram
prefixes of all Snort signatures. The programming works by

computing two hash functions for each signature prefix and
setting the corresponding bit in the vector. The signature
identification numbers associated with those bits are stored
in a buffer organized as a hash table. Fig. 4 explains how the
programming of a 21-bit signatures Bloom vector is carried
out for the first 4-grams of the following Snort signatures
{"dba_tables", "user_tablespace", "sys.all_users"}, with
SIDs {1687, 1688, 1689}. The figure shows the signatures
with the corresponding hash bits to be set in addition to the
Bloom vector after programming. For {"dba_tables"}, the
prefix “dba_” is hashed with two functions to result in 5 and
16 which indicate the indices for the bits to be set in the
Bloom filter. The signature ID, 1687, is recorded to be used
later in generating the probable matches list.

For each incoming packet, Exscind starts a four character
sliding window throughout the packet and computes the
same two hash functions for each window. Fig. 5 shows how
the sliding window moves through packet number 48897 of
trace 1 of DEFCON17 traces [20]. For each hashed sliding
window, Exscind checks the corresponding two hash bits in
the signatures Bloom vector. If they are set, this means there
is a probable match. Therefore, Exscind uses the signatures
SIDs buffer to retrieve the associated signatures and marks
them in the probable signatures list. The algorithm also
records the index of the sliding windows that caused the
match. On the other hand, if any of the two hash bits is not
set, the sliding window continues until the end of the packet
is reached. Fig. 6 shows how the bits are checked for the last
sliding window “user”.

Figure 4. Signatures Bloom vector programming

Figure 5. Packet sliding window

Figure 6. Bloom vector query

2011 7th International Conference on Next Generation Web Services Practices 27

Finally, the algorithm checks the resulting probable
signatures list. If it is empty, this means that the packet is
clean and with 100% certainty it does not contain any
signatures. Therefore, there is no need to perform any pattern
matching on that packet. Otherwise, the packet is suspicious
and may contain attack signatures. Therefore, Exscind uses
the PWM to search the packet only for the probable matches
starting from the index of the first probable match.

B. Probable Match Modified WM

PWM rewrites the original WM C++ code [21] using
C#.NET in order to support all signature elements especially
the HEX bytes between the pipes. PWM extends WM to
support all special, control and non-printable ASCII
characters as well as the NULL character. In addition, it
searches the packet for just the highly probable signatures
starting from a certain index provided by the filter. In the
preprocessing phase the PWM is initialized once with all
signatures. Only the search function is modified with the
probable matches list as an argument. PWM associates each
signature in the HASH table lists with a Boolean flag
indicating whether that signature belongs to the probable
matches or not. When the SHIFT table indicates a zero shift
and the HASH table is to be searched, PWM checks that
flag. If set, the WM computes the prefix hash for the packet
substring, and then checks its equality with the signature
prefix stored in the PREFIX table. If they are equal, exact
character matching is performed between the signature and
the packet substring until reaching the end of that signature.
If the signature and the packet substring match, PWM
declares the packet malicious and records the number of
match occurrences along with the index of each match.
Otherwise, if the flag is not set, this means that the signature
does not belong to the probable matches. Therefore, it is
skipped safely without performing any matching and the
next string in the HASH table list is checked. In addition,
PWM supports searching the packet starting from the
position of the first probable match instead of searching the
whole packet. This is done by using the index of the sliding
window which caused that match provided by the filter.

V. EVALUATION AND ANALYSIS

Experimental time and memory measurements are
carried out using actual traffic traces. The experiments are
designed to compare Exscind with the regular Wu-Manber
algorithm used in Snort. The simulations are performed on a
PC with a 3 GHz Intel Core 2 processor, with 4 GB of main
memory running Microsoft Windows 7. Both packets and
signatures are extracted and read offline from local files.
Each experiment is performed 20 times and then average
time and memory are scored. To measure the execution time,
we use ExecutionStopWatch class [22] and to measure the
memory usage, we use the Garbage Collection class [23].

A. Traffic Analysis

To evaluate Exscind, we use both normal and malicious
traffic traces classified into good, bad and ugly. The
classification is based on the maliciousness of packets
measured by the percentage of Snort signatures found in the

trace. The good traces are from the SourceForge.net
publically available PCAP files which list packet capture
repositories [24]. The four traces shown in the lower section
of Table III, with percentage of malicious content ranging
from 1 to 4% represent the good traces. Fragmented packets
were ignored during the analysis.The good traces include:
1) SIP_Eyebeam2Eyebeam_Video_Audio (VA) is a video
and audio streaming from TechTraces repository [25].
2) Good-Download (GD) is a file download from Laura's
Lab Kit v.8 repository [26].

3) Live-Chat (LC) is a live chat application from [26].

4) WebHotmail (HM) is a mail trace from TkuIM mail

repository [27].
For the bad and ugly traces, we use packet traces from

Capture the Flag (CTF) game held at DEFCON17 hacker
conference released in August of 2009 [19]. CTF is a virtual
warfare between the best hackers in the world to capture
each other’s machines. The highly malicious traces are
collected and made available publically for research
purposes. The bad and ugly traces analysis is shown in the
upper section of Table III. Out of total of 78 CTF traces
analyzed, we only use eight traces, those with the highest and
lowest percentages of malicious packets. Traces number 1,
22, 0 and 2 have the least percentage of malicious packets,
ranging between 15.9% and 20.4%, and represent the bad
traces. Traces number 8, 57, 51 and 58 have the highest
percentage of malicious packets, ranging between 38.5% and
44.6%, and represent the ugly traces. It is also important to
mention that a packet might contain more than one match.
For example although trace 58 has 119,627 malicious
packets out of 268,000 in total, but the same trace has
3,107,078 attack signature matches averaging almost 26
matches per malicious packet.

B. Traffic and Signatures Extraction

We use Wireshark Network Protocol Analyzer v1.4.4 to
open and extract the packets traces [28]. A C# utility reads
the trace files in binary, extracts the packet payloads in HEX
and writes each packet contents on a separate line.

For the signatures, we use Snort 2.9.0.4 rules database
released in March of 2011 which contains 56 rule files [9].
Exscind extracts the SID, content and uricontent parts from
all Snort rules. Multiple content and/or uricontent parts of the
same rule are concatenated with zero space to form one
signature. The total number of extracted signatures is 9,945.

C. Execution Time and Speedup

Table III shows the execution time of Exscind compared
to the regular WM for the good, bad and ugly traces using
four characters prefix in the filter. The ugly traces represent
the worst case scenario while the good traces represent the
best or normal scenario. The table shows significant
speedup of 3.4 on average for all traces. The worst case
speedup for ugly traces is between 1.5 to 1.7 times, with an
average of 1.61 times. The speedup for the bad traces ranges
between 2.9 and 3.3 times, with average of 3.17 times, while
the speedup for the good traces ranges between 5 and 6.2
times, with an average of 5.5 times.

28 2011 7th International Conference on Next Generation Web Services Practices

It is noticeable that the longest execution time belongs to
the bad and not the ugly traces as one might expect. The
time depends on the total number of packets, and in a great
degree, on the number of actual signatures found. On
average the bad traffic has more packets than the ugly
making their execution time longer. In addition, the more
signatures matched the more the filter will produce a sizable
probable matches list and the more pattern matching the
algorithm will have to execute. The bad traces have on
average 31,874,200 signature matches while the ugly traces
have only 5,820,262 signature matches. The large number of
matches simply translates into larger execution time. We
chose the ugly traces based on the percentage of malicious
packets which is indicative of how many packets we can
skip using the filter. Because we work at the packet level
and ugly traces have more malicious packets, we report
lower speedup for the ugly traces as opposed to the bad
traces despite the fact that bad traces have more matches.
The speedup is best represented by Fig. 7 with the lowest
value of 1.53 times in the case of the most malicious trace
and highest of 6.18 times in the case of the good VA trace.

It is difficult to compare to the related work due to the
use of different datasets and testing environments. QWM
used the Bible and Chinese text for instance. But comparing
the speedup numbers as opposed to the original WM would
give us a taste. For 2000 signatures QWM, AFWM and
IWM reported speedups of 1.21, 1.55 and 1.67 respectively.
The average speedup for Exscind for 2000 signatures was
2.98. The best speed up was 5.43 and the worst was 1.26.

D. Memory Usage

To evaluate the memory overhead added by the
exclusion-inclusion filter, we measure the total memory
consumption of both Exscind and WM for the ugly traces.
The total memory consumed by WM is 537,178 KBs and by
Exscind is 537,766.1 KBs with an increase of only 588.1
KBs representing 0.1095% worst-case overhead. That is a
very small price to pay for an average speedup of 3.4. The
overhead is attributed to the signatures Bloom vector, the
SIDs buffer and the probable matched signatures list.

E. Performance Scaling

To evaluate how Exscind performance scales with
increasing workload, we vary the number of signatures while
measuring both the execution time and memory usage. Fig. 8
shows Exscind speedup for the good, bad and ugly traces
against increasing number of signatures. The signatures are
varied between 1000 and 9000, with 1000 intervals. In order
to do that, we randomly divided Snort signatures into groups
of 1000 and conducted the experiments while adding 1000
signatures each time. The chart shows that the smallest
speedup is achieved when we have the smallest number of
signatures that is 1000. This is expected, because after
careful inspection the first group of 1000 signatures, it turned
out that they are short and averaging 4.5 characters in length
while longer strings appear more in the signatures set as we
move toward the full set of 9000 signatures. The short
signatures are easily found in packets and therefore the filter

is not able to skip that many packets. On the other hand, the
longer strings penalize the WM which has to perform
matching every time while Exscind benefits more from
skipping such long strings. Therefore, WM runtime increases
while Exscind time gets shorter which explains the slight
increase in speedup as the number of signatures increase.The
important conclusion out this experiment is that the speed up
achieved by the algorithm is nearly independent from the
number of strings if they were completely even in size. This
is a great performance scaling compared to decreasing
performance, exponentially in AC and linearly in WM. Fig.
9 shows Exscind worst case memory usage measured for the

TABLE III. EXECUTION TIME FOR THE GOOD, BAD AND UGLY TRACES

Fig. 9 shows the execution time for these traces using 4-

Figure 7. Speedup for good, bad and ugly traces

Figure 8. Speedup versus number of signatures

Ugly

Trace

Total

Packets

Malicious

Packets

Malicious

Packets (%)

WM

Time

Exscind

Time

Speed

up

8 671116 258556 38.5 25.74 15.09 1.71

57 209188 86129 41.2 15.29 9.53 1.60

51 299713 129763 43.3 15.02 9.50 1.58

58 268000 119627 44.6 11.37 7.42 1.53

Bad

Trace

Total

Packets

Malicious

Packets

Malicious

Packets (%)

WM

Time

Exscind

Time

Speed

up

1 688158 109311 15.9 75.44 23.00 3.28

22 659365 110363 16.7 76.22 22.90 3.33

0 771382 139866 18.1 66.18 20.87 3.17

2 642091 130901 20.4 55.04 19.11 2.88

Good

Trace

Total

Packets

Malicious

Packets

Malicious

Packets (%)

WM

Time

Exscind

Time

Speed

up

VA 3606 54 1 105 17 6.18

GD 9354 175 2 345 63 5.48

LC 29474 1031 3 698 130 5.37

HM 2817 126 4 90 18 5.00

2011 7th International Conference on Next Generation Web Services Practices 29

TABLE IV. MEMORY USAGE FOR A PREFIX OF 4 CHARACTERS IN KBS

Figure 9. Meomory usage versus number of signatures

ugly traces versus increasing number of signatures. The
memory usage increases linearly with the number of
signatures. This is typical of WM based algorithms as
opposed to exponential in AC.

VI. CONCLUSIONS

We introduce Exscind: a new and fast software-based
pattern matching algorithm to accelerate signature-based
IDS. It excludes clean traffic without the need to do pattern
matching by using a lightweight exclusion-inclusion filter
programmed only with the signatures prefix. In addition, the
filter includes only a subset of the signatures in the search
process performed by a specially modified WM algorithm.
The filter establishes the PWM algorithm with a starting
position for the first probable match as well as a small list of
probable matches. Exscind is thoroughly evaluated and
compared to the state of the art. Exscind achieves an average
speedup of 3.4 times and a normal traffic speedup of more
than 6 times. The overhead incurred is limited to 0.11%
increase in memory usage. The algorithm scales very well
with increasing number of signatures. The speedup is almost
constant and undiminished with increasing number of
signatures while memory usage increases linearly. The filter
is easily reconfigured with new signatures to support
emerging attacks.

REFERENCES

[1] R. Proudfoot, K. Kent, E. Aubanel, N. Chen, “High performance
software-hardware network intrusion detection system. In
Proceedings of the International Conference Field-Programmable
Technology (ICFPT), 2007:309-312.

[2] M. Aldwairi, T. Conte, P. Franzon, “Configurable string matching
hardware for speeding up intrusion detection. In ACM SIGARCH
Computer Architecture News 2005, 33(1):99-107.

[3] D. Alansari, “Fast pattern matching for intrusion detection using
exclusion and inclusion filters”, MS thesis, Jordan University of
Science and Technology, Irbid, Jordan, 2011, Print.

[4] L. Roberts, “Internet growth trends”, In Internet Watch column of
IEEE Computer Magazine, January 2000.

[5] R. Rehman, “Intrusion detection with SNORT: advanced IDS
techniques using SNORT, Apache, MySQL, PHP, and ACID”,
Pearson Education Inc., Prentice Hall, 2003:75-129.

[6] R. Boyer and J. Moore, "A fast string searching algorithm". In
Communications of the ACM vol. 20 no. 10, pp762–772, 1977,
doi:10.1145/359842.359859.

[7] A. Aho, M. Corasick, "Efficient string matching: an aid to
bibliographic search", in the Communications of the ACM vol. 18, no
6, pp333–340, June 1975. doi:10.1145/360825.360855,

[8] S. Wu and U. Manber, “A fast algorithm for multi-pattern searching”,
Technical Report TR94-17, University of Arizona, 1994.

[9] Snort rules, http://www.snort.org/snort-rules/, last access in April,
2011.

[10] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors”, In the Communications of the ACM 1970, 13(7):422-426.

[11] H. Song, S. Dharmapurikar, J. Turner and J. Lockwood, “Fast hash
table lookup using extended Bloom filter: an aid to network
processing”, In SIGCOMM Proceedings of the 2005 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications 2005, 35(4):181-192.

[12] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern
matching for network intrusion detection systems”, In Selected Areas
in Communications IEEE, 2006, 24(10):1781-1792.

[13] D. Chaudhary, “Parallel processing of Bloom filter”, In International
Journal of Electronic Engineering Research 2010, 2(1):35-40.

[14] K. Anagnostakis, S. Antonatos, E. Markatos and M. Polychronakis,
“E2xB: A domain-specific string matching algorithm for intrusion
detection”, In the Proceedings 18th IFIP International Information
Security Conference (SEC) 2003:217-228.

[15] Z. Chen, Y. Zhang, Z. Chen and A. Delis, ”A digest and pattern
matching-based intrusion detection engine”, In the Computer Journal
2009, 52(6):699-723.

[16] K. Ramakrishnan, T. Nikhil and M. Jignesh, ”SigMatch: fast and
scalable multi-pattern matching”, In 36th International Conference on
Very Large Data Bases (PVLDB) 2010, 3(1):1173-1184.

[17] H. Yang, K. Xu and Y. Cui, "An improved Wu-Manber multiple
patterns matching algorithm," In 25th IEEE International
Performance, Computing, and Communications Conference (IPCCC),
2006: 680-688.

[18] Z. Chen and D. Wu, "Improving Wu-Manber: a multi-pattern
matching algorithm", In IEEE International Conference on
Networking, Sensing and Control (ICNSC), 2008: 812-817.

[19] Z. Baojun,C. Xiaoping, P Lingdi and W. Zhaohui, “Address Filtering
Based Wu-Manber Multiple Patterns Matching Algorithm”, In
Proceedings of the 2009 Second International Workshop on
Computer Science and Engineering (IWCSE), IEEE Computer
Society Washington 2009, (1):408-412.

[20] DEFCON17 traffic, Last access in Apr, 2011, http://www.defcon.org.

[21] One unified, last access in Sept, 2010,
http://www.oneunified.net/blog/2008/03/23/.

[22] CodeProject ExecutionStopwatch, last access in February, 2011,
http://www.codeproject.com/KB/dotnet/ExecutionStopwatch.aspx.

[23] MSDN Microsoft GC, last access in February, 2011,
http://msdn.microsoft.com/en-us/library/system.gc.aspx.

[24] SourceForge publically availabe PCAP files, last access in April,
2011,http://sourceforge.net/apps/mediawiki/networkminer/index.php?
title=Publicly_available_PCAP_files.

[25] TechTraces sample captures, last access in April, 2011,
http://techtraces.com/sample_captures/.

[26] Laura's Lab Kit v.8, last access in April, 2011,
http://demeter.uni-regensburg.de/Lauras_Lab_Kit_v8/AutoPlay/
trace_files_llk8/.

[27] TkuIM mail, last access in April, 2011,
http://mail.im.tku.edu.tw/~miller.lai/pcap/pcapList.php.

[28] Wireshark v1.4.4, last access in February, 2011,
http://www.wireshark.org/download.htm.

WM

Memory

Our

Memory

Added

Overhead

Percentage

overhead (%)

537,178 537,766.1 588.1 1.095

30 2011 7th International Conference on Next Generation Web Services Practices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

